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Abstract
A two-parameter, probabilistic growth model for partition polygon clusters is
introduced and exact results obtained relating to the area moments and the area
probability distribution. In particular, the scaling behaviour in the presence
of asymmetry between growth along the two principal axes is discussed.
Variants of the model are also examined, including the extension to rooted stack
polygons. An interesting application relates to characterizing the asymptotic
behaviour of the cumulative customer waiting time distribution in a particular
discrete-time queue.

PACS numbers: 02.50.−r, 05.50.+q, 64.60.Cn

1. Introduction

Partition polygons are a class of self-avoiding polygons defined on a square lattice [1]. Despite
their apparent simplicity, they have a rich structure which is of fundamental importance in the
theory of number partitions (so-called Ferrers diagrams) [2], and also of interest in the context
of lattice models of crystal surfaces and vesicle behaviour [3, 4]. Here, a two-parameter,
probabilistic growth model for compact clusters that take the shape of partition polygons (and
related structures) is proposed and solved. The motivation for the work, following on from
[5], comes from trying to identify classes of exactly solvable cluster growth models, in the
spirit that these often shed valuable light on more complex, as yet unsolved, models. It must
be conceded that the resulting growth models are somewhat artificial in their natural context.
However, they do provide a new and interesting connection to queueing theory, as explained
at the end of the paper.

To define the basic problem, consider a single square which will act as a root site and
which is assumed to be present with probability one (figure 1). Growth proceeds by adding
squares horizontally and vertically, such that every new row contains a square on top of every
square in the row below plus possible overhangs on the right (of arbitrary length). Regarding
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n = 5

m = 7

x

y

Figure 1. A typical partition polygon cluster (Ferrers diagram) of height n = 5 and width m = 7,
grown from a single root square (containing the solid circle). The activity of the polygon is
x14 y10 z18, and the probabilistic weight is p6

x p4
y q5

x qy.

the growth sequence, growth along a given row proceeds until such time as it terminates;
then the next row is added and so on. The growth rules are that each overhanging square
within a row (except for the root) occurs with probability px, and each new row (apart from
the first) occurs with probability py. The resulting structure, once growth terminates, is a
partition polygon (figure 1) with probabilistic weight pM−1

x pN−1
y qN

x qy , where qx ≡ 1 − px ,
qy ≡ 1 − py and N, M are the number of rows and columns respectively. The factors of
qN

x and qy relate to terminating the growth process in the horizontal and vertical directions
respectively. Questions of interest relate to the cluster size moments and to the probability
distribution for generating clusters of a given size.

It transpires that in this model the cluster moments diverge only on the critical lines
px = 1 and py = 1. Thus the phase diagram is simpler in structure than for models based on,
for example, compact directed percolation, where the critical line is given by px + py = 1 [5].
However, it remains a particular challenge to understand the scaling behaviour near these lines
in the presence of asymmetry (competition) between growth in the horizontal and vertical
directions. Such features are not often explored but in the present model can be handled
exactly in many respects.

2. Generating functions

To begin the analysis, a slightly unconventional approach to deriving the key generating
functions of interest is adopted. The benefit is felt later when the formulae obtained are used
to derive new results for related models such as the rooted stack polygon model; see, e.g.,
(33). Let gm,n(x, y, z) be the generating function for enumerating partition polygons that are
restricted to having fixed width m and height n, where x and y are the horizontal and vertical
perimeter activities and z is the area activity (figure 1). Clearly gm,n(x, y, z) = x2my2nfm,n(z).
The lower boundary of any such polygon can be generated by taking a directed walk of m + n

steps from lower left to top right, where the first step is horizontal, the last step is vertical,
and the order of the remaining m − 1 horizontal steps and n − 1 vertical steps is unique to the
polygon in question. This picture provides a useful combinatorial decomposition of partition
polygons based on the two possible choices for the second step of the walk (see figure 2). As
a result, fm,n(z) obeys the following recursion relation,

fm,n(z) = zfm,n−1(z) + znfm−1,n(z) (1)
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fm,n(z) zfm,n-1(z) znfm-1,n(z)

= +n

m

Figure 2. A decomposition for fm,n(z), based upon the two possible choices (vertical or horizontal)
for the second perimeter step at the lower vertex (filled square) in the left-hand diagram. This
defines a recursive structure for the generating function.

with fm,n(z) = fn,m(z) and f1,n(z) = zn. Setting m = 1 in (1) shows that one must take
f0,n(z) ≡ 0 for consistency. In general, fm,n(z) is a finite polynomial in z whose coefficients
count the number of ways to partition an integer s into exactly n (or m) parts of which the
largest is m (or n). For z = 1 the solution of (1) is given by

fm,n(1) = (m + n − 2)!

(m − 1)!(n − 1)!
(2)

which has a natural interpretation in terms of the directed walk argument above. Without
having to find fm,n(z) for z �= 1 explicitly, one can sum (1) over m to derive

Gn(z) = zGn−1(z) + znGn(z) Gn(z) ≡
∞∑

m=1

fm,n(z) G0(z) ≡ 1. (3)

The solution of this first-order recursion is simply

Gn(z) = zn

n∏
i=1

1

(1 − zi)
n � 1 (4)

whereupon it follows that

G(z) ≡
∞∑

n=1

Gn(z) =
∞∏
i=1

1

(1 − zi)
− 1. (5)

This well-known expression counts the total number of partitions of a given integer [1, 2]. The
full partition polygon area–perimeter generating function comes from re-writing (1) in terms
of gm,n(x, y, z) and summing over m then n,

G(x, y, z) =
∞∑

n=1

∞∑
m=1

gm,n(x, y, z) = x2
∞∑

n=1

y2nzn

n∏
i=1

1

(1 − x2zi)
. (6)

It is useful to note on grounds of symmetry that this expression is invariant under the
interchange x ↔ y. Setting z = 1 in (6) gives the perimeter generating function

G(x, y, 1) = x2y2

1 − (x2 + y2)
. (7)

It is evident that G(x, y, z) is singular on a locus of critical points defined by x2 + y2 = 1
and z = 1. More specifically, G(x, y, z) is convergent if z < 1 for all x, y � 1, and also
convergent if z = 1 provided that x2 + y2 < 1 [4].
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3. Moments and the asymptotic behaviour

To incorporate probability, the key observation is that the weight of a given partition polygon
is, within the prescribed model, determined by its perimeter activity. Setting z = 1, x = √

px

and y = √
pyqx in the polygon activity, and multiplying by a global factor of qy(pxpy)

−1,
generates the correct probabilistic weighting of every polygon, as may easily be verified (see
figure 1). It follows using (6) that the area probability generating function is given by

Ĝ(px, py, z) = qy

∞∑
n=1

pn−1
y qn

x zn

n∏
i=1

1

(1 − pxzi)
≡

∑
s

Ps(px, py)z
s (8)

where s is the polygon area (size) and Ps(px, py) is the corresponding probability. Note that
Ĝ(px, py, 1) = 1, as required. The area moments are given in turn by

Sk ≡ 〈sk〉 =
(

z
∂

∂z

)k

Ĝ(px, py, z)

∣∣∣∣
z=1

(9)

with first moment (mean area)

S1 = px

(1 − px)(1 − py)2
+

1

1 − py

. (10)

This expression is exact for all values of px, py < 1. It diverges when either py → 1 or
px → 1, which accords with one’s expectations, although the exponents differ in each case.
The limits px, py → 0 are self-explanatory. Higher order moments can also be derived exactly,
although evaluating the necessary derivatives of (8) becomes progressively harder. One can,
however, make statements about the asymptotic or scaling behaviour of the area moments and
the area probability distribution, and these are of interest because of the two-parameter nature
of the problem. The two principal limiting cases will be considered separately. It is useful to
note for later that, based on a direct calculation,

S2(px, py → 1) ∼ 6p2
x

q2
xq

4
y

S2(px → 1, py) ∼ 2 + 4py

q2
xq

4
y

. (11)

3.1. The limit py → 1

In this section the limit py → 1 with px �= 0, 1 fixed is considered. Rather than directly
manipulating the exact solution (8), an alternative approach ultimately proves to be more
useful in terms of analysing the critical behaviour. First, one can exploit the symmetry
G(x, y, z) = G(y, x, z) to rewrite (6) and hence (8) as

Ĝ(px, py, z) = qxqy

∞∑
n=1

pn−1
x zn

n∏
i=1

1

(1 − pyqxzi)
. (12)

Define G̃(px, py, z) ≡ (qxqy)
−1Ĝ(px, py, z). Inspection of (12) reveals that this modified

generating function obeys a q-linear functional equation [6],

G̃(px, py, z) = z

1 − pyqxz
+

pxz

1 − pyqxz
G̃(px, pyz, z) (13)

which can be rewritten as

G̃(px, py, z) = z + pyqxzG̃(px, py, z) + pxzG̃(px, pyz, z). (14)
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From the discussion in section 2 it follows that the generating function is singular in the limit
z → 1− and py → 1. Scaling arguments [4, 6, 7] suggest that in this limit the generating
function has the following form,

G̃(px, py, z) ∼ 1

εθ
Fy

(
1 − py

εϕ
, px

)
(15)

where ε ≡ 1−z and px is a fixed parameter. To evaluate the scaling function Fy(τ, px), where
τ = (1 − py)ε

−ϕ , one expands (14) around the critical point using the method of dominant
balance [6, 7]. This entails letting py → 1 and, simultaneously, ε → 0+ such that τ remains
fixed, i.e. the evolution of the variable py is controlled by the defining relation py ≡ 1 − τεϕ .
The result, after inserting (15) into (14), expanding and retaining the leading order (dominant)
terms in powers of ε, is that

0 = 1 − qxτεϕ−θFy(τ, px) + pxε
1−ϕ−θ dFy(τ, px)

dτ
+ · · · . (16)

For there to be a non-trivial scaling function the exponents θ and ϕ must take the values
θ = ϕ = 1/2, whereupon Fy(τ, px) obeys

px

dFy(τ, px)

dτ
= qxτFy(τ, px) − 1. (17)

This has the solution

Fy(τ, px) =
√

π

2pxqx

erfc

((
qx

2px

)1/2

τ

)
exp

(
qx

2px

τ 2

)
(18)

and this expression ultimately determines the asymptotic scaling behaviour of the probability
generating function (12) in the limit z → 1− and py → 1.

For τ → ∞, i.e. z → 1− with py ∼ 1 fixed, an asymptotic expansion of (18) leads to the
following useful result,

Ĝ(px, py, z) ∼
∑
n�0

(−1)n
�

(
n + 1

2

)
2n

√
π

pn
x

qn
x q2n

y

(1 − z)n. (19)

From this one can work out the asymptotic behaviour of the moments by noting in relation
to (9)

Sk(px, py → 1) ∼ (−1)k
(

∂

∂ε

)k

Ĝ(px, py, 1 − ε)

∣∣∣∣
ε=0

. (20)

The result is

Sk(px, py → 1) ∼ (2k)!

2k

(
px

qx

)k 1

(1 − py)2k
. (21)

Note that (10) and (11) are consistent with this expression. Concerning the probability
distribution itself, using (15) and (18) one has for py → 1 and z → 1−,∑

s

Ps(px, py → 1)zs ∼
(πα

ε

)1/2
erfc

((α

ε

)1/2
)

exp
(α

ε

)
(22)

where α = qxq
2
y

/
2px . Since zs ∼ exp(−εs), the transform can be inverted (care is needed to

ensure the procedure is rigorous) to give an asymptotic form valid for py → 1 and s → ∞,

Ps(px, py → 1) ∼
(

qx

2px

)1/2

(1 − py)s
−1/2 exp

(
−

(
2qx

px

)1/2

(1 − py)s
1/2

)
. (23)

This is an interesting result. Contrary, perhaps, to one’s expectation, the tail of the distribution
is heavy (Weibull). A consistency check comes from multiplying (23) by sk and integrating
to re-derive the asymptotic behaviour of the cluster moments (21). The scaling form (23)
specifies the asymptotic behaviour of the model as py → 1 for px �= 0, 1 fixed.



3754 M J Kearney

3.2. The limit px → 1

The limit px → 1, with py �= 0, 1 fixed, is slightly less amenable to analytic treatment than
the limit py → 1. However, the method of dominant balance may still be used to analyse
(14). The appropriate scaling form this time is

G̃(px, py, z) ∼ 1

ε
Fx

(
1 − px

ε
, py

)
(24)

with the scaling function, Fx(τ, py), where τ = (1−px)ε
−1, obeying the following differential

equation,

py

∂Fx(τ, py)

∂py

= 1 − (1 + τqy)Fx(τ, py). (25)

The solution of (25) may be written in the form

Fx(τ, py) = eτpy

∫ 1

0
t τ e−τpy t dt = eτpy (τpy)

−τ−1γ (τ + 1, τpy) (26)

where γ (a, b) is the incomplete gamma function. Despite knowing (26), it has not proved
possible to analytically invert the generating function (24) to obtain the probability distribution,
and this remains an open problem. However, there exists an asymptotic expansion of (26) in
powers of ε of the following form,

Fx ∼
∑
n�0

(−1)n
Cn(py)

qn+1
x q2n+1

y

εn+1 C0 ≡ 1 (27)

whose coefficients determine the asymptotic behaviour of the moments,

Sk(px → 1, py) ∼ k!

(1 − px)k

Ck(py)

q2k
y

. (28)

Substituting (27) into (25) it follows in straightforward fashion that

Ck = pyqy

∂Ck−1

∂py

+ [1 + 2py(k − 1)]Ck−1 k � 2 (29)

with C1 = 1. Equation (29) can be solved recursively, e.g. for k = 2 one has C2 = 1 + 2py ,
whereupon (28) agrees with (11). Moreover, as py → 1 one finds that Ck → (2k)!/k!2k , so
that (28) is fully consistent with (21) in the limit px → 1. In general, the required solution
for Ck is a polynomial in py whose highest order term is k!pk−1

y . The structure of Ck hints at
a more complex form for the unknown probability distribution than the comparatively simple
scaling result (23).

4. Variants of the basic model

Having studied the basic model one can look at related problems. Suppose that the polygons
are conditioned so that they always have a fixed height, N, which can form the basis of a
growth model in a restricted geometry. The relevant generating function is given by using the
results in section 2,

GN(x, y, z) = y2N

∞∑
m=1

x2mfm,N(z) = x2y2NzN

N∏
i=1

1

(1 − x2zi)
. (30)
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x

y

M = 10

N = 5

Figure 3. A typical rooted stack polygon cluster with N = 5 rows and M = 10 columns. The root
column contains the solid circle. The activity of this particular stack polygon is x20 y10 z25, and the
probabilistic weight is p9

x p4
y q10

x qy .

The corresponding area probability generating function (taking into account the conditional
nature of the problem) is

ĜN(px, z) = qN
x zN

N∏
i=1

1

(1 − pxzi)
. (31)

This expression no longer depends upon py since N is fixed. For the mean area,

S1 ≡
(

z
∂ĜN

∂z

)∣∣∣∣∣
z=1

= N +
px

1 − px

N(N + 1)

2
. (32)

Setting N = 1 in this result is equivalent to setting py = 0 in (10). When px = 0 only the root
column remains, whose height, N, is fixed by construction.

The initial growth model can also be modified so as to result in the formation of (rooted)
stack polygons [1, 4], where the overhangs can occur on either side of the root column
(figure 3). It is evident that these stack polygons can be represented as the concatenation
(overlap) of two partition polygons, the overlap occurring for the root column which,
necessarily, has the same height for each partition polygon (figure 3). Of course, a correction
has to be made to prevent over-counting of area and boundary elements. The generating
function for rooted stack polygons can thus be written (using results from section 2) as

H(x, y, z) =
∞∑

n=1

∞∑
r,r ′=1

x2r+2r ′
y4nfr,n(z)fr ′,n(z)

x2y2nzn

= x2
∞∑

n=1

y2nzn

n∏
i=1

1

(1 − x2zi)2
(33)

where the x2y2nzn factor in the denominator takes care of over-counting arising from the
numerator. This expression is different from the generating function for unrooted stack
polygons [1, 4]. To introduce probability one now has to set x = √

px and y = qx
√

py

and multiply by a global factor of qy(pxpy)
−1. Note the modification to y (compared to the

partition polygon case) since growth terminates on both sides. From (33), the area probability
generating function is given by

Ĥ (px, py, z) = qy

∞∑
n=1

pn−1
y q2n

x zn

n∏
i=1

1

(1 − pxzi)2
. (34)
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Thus the mean area is

S1 ≡
(

z
∂Ĥ

∂z

)∣∣∣∣∣
z=1

= 2px

(1 − px)(1 − py)2
+

1

1 − py

. (35)

This result has a natural interpretation. If one represents the stack polygon area s = s1 +
s2 − n, where s1 and s2 are the areas of the two overlapping partition polygons and n is the
area of the overlap (root) column, then (35) simply states that the expected area is twice the
expected area for a partition polygon (10) minus the expected area of the root column, the latter
being (1 − py)

−1. For higher order moments, however, there is no such simple relationship,
due to coupling through the root column.

One can repeat the analysis of section 3 for stack polygon clusters to work out the
asymptotic behaviour. Of course, the critical scaling behaviour is qualitatively similar,
evidenced, for example, in the following two results (cf (23) and (21)),

Ps(px, py → 1) ∼
(

qx

4px

)1/2

(1 − py)s
−1/2 exp

(
−

(
qx

px

)1/2

(1 − py)s
1/2

)
(36)

Sk(px, py → 1) ∼ (2k)!

(
px

qx

)k 1

(1 − py)2k
. (37)

One can also examine the variant of the stack problem wherein the clusters always grow to a
fixed height N. In such circumstances, the probability generating function is given by

ĤN(px, z) = q2N
x

p2
xz

N

[ ∞∑
m=1

pm
x fm,N(z)

]2

= zNq2N
x

N∏
i=1

1

(1 − pxzi)2
(38)

which, again, is independent of py . The calculation of the mean area proceeds as before with
the result that

S1 =
(

z
∂ĤN

∂z

)∣∣∣∣∣
z=1

= N +
px

1 − px

N(N + 1). (39)

Once more this result can be interpreted as being twice the expected area of the corresponding
partition polygon (32) minus the area of the root column, N. A completely different derivation
of (39) was given in [5] by considering a special limit of a cluster growth model that is related
to compact directed percolation.

5. An application in queueing theory

As a final (and rather interesting) topic, the following problem in queueing theory maps onto
the results described above for partition polygons (see figure 4). Consider a discrete-time
queue with unit time-step which operates in batch mode through a single server. Arrivals and
departures occur at the time slot boundaries. At time t = 0, a number of customers N > 0
arrive into the queue, where N is distributed geometrically; PN = λN−1λ, with λ = 1 − λ.
These customers are then served as follows: if at time t > 0 the number of customers left in the
queue is Nt , the number Mt departing the queue is geometrically distributed as PMt

= µMt µ

for 0 � Mt < Nt , with PNt
= µNt , and µ ≡ 1 − µ. It is assumed in this problem that no

other customers enter the queue after the initial batch, and that the queue empties in finite
time (i.e. µ �= 0). As an illustration of such a process, imagine a cohort of passengers
leaving an aircraft and clearing immigration in variable size family groupings before the next
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N = 5

T = 7 Time

Queue
length

Time

Departures

Figure 4. A partition polygon representation of queueing dynamics, with an initial random batch
of N = 5 customers being processed over a busy period of T = 7. The activity of the polygon is
x14 y10 z18, and its probabilistic weight is λ4λµ5µ6. The cumulative customer delay is S = 18.

aircraft cohort arrives. Figure 4 (a simple inversion of figure 1) shows that the cumulative
(i.e. total) customer delay, S, experienced in this model is just the area of a partition polygon.
At a fundamental level, this is equivalent to analysing the polygon structure on a column by
column basis rather than a row by row basis. As a consequence, results such as (10), (21) and
(23) apply immediately with the replacements px → µ and py → λ. So, for example, for
λ → 1 and x → ∞,

Pr(S > x) ∼ exp

(
−

(
2µ

µ

)1/2

(1 − λ)x1/2

)
. (40)

It is significant that the cumulative delay distribution in this model has a heavy tail, something
which is also evident in the study of other area-like variables in queueing theory [8, 9]. In
a different scenario, where the number of customers, N, arriving at t = 0 is fixed, one may
adapt (31) so that quantities of interest can be obtained from the defining generating function

ĜN(µ, z) ≡
∑

S

PS(µ)zS =
N∏

i=1

µz

(1 − µzi)
. (41)

With suitable modification, one can also obtain information about the time taken by the server
to service all the customers (the so-called busy period, T; see figure 4), and to cover the case
where at most one customer can leave the queue per time slot. These and other issues will be
addressed more fully elsewhere.

6. Conclusions

In summary, a two-parameter, probabilistic growth model for partition polygons has been
defined and solved exactly for the mean area and for certain aspects of the asymptotic behaviour
of the area moments and the scaling behaviour of the area probability distribution. The model
allows an investigation to be made of scaling behaviour in the presence of asymmetry between
growth along the two principal axes. The method of solution also allows results to be obtained
for a corresponding model wherein growth in the vertical direction is restricted to a fixed
height. Extensions to the case of rooted stack polygons are similarly straightforward. Finally,
a simple mapping enables the results to be applied to an interesting problem in discrete-time
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queueing theory with batch arrivals and departures. This suggests that there may well be other
problems in a variety of fields to which the present results might find immediate application.
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